
A Bit About Program Design

See Section 9.3 of the text

Think back to the way we wrote the calendar.py
program.

At one point we needed to write the following
function:

def daysSince1800(m,d, y):
 # This returns the number of days
 # between 1/1/1800 and m/d/y

We did this by calling functions we hadn't written
yet:

def daysSince1800(m,d, y):
 # This returns the number of days
 # between 1/1/1800 and m/d/y
 total = yearDays(y) + monthDays(m, y) + d-1
 return total

From the calls we know what kinds of parameters
these functions will need and what they should
return:

def yearDays(y):
 # This returns the sum of the days in
 # the years from 1800 to y-1

def monthDays(m, y):
 # This returns the sum of the days in
 # all of the months of year y prior to m

The process then repeats on each of these
functions.

This is called top-down design; it is the most
common technique for designing programs. It is also
a great technique for solving problems in general,
even problems that have nothing to do with
computers or programs.

Here is a statement of top-down design as a general
problem-solving technique:

• Start with the problem at hand
• Decompose the problem into simpler

subproblems that together add up to a
solution of the original.

• If any of the subproblems are simple enough
to be solved directly, give their solutions.

• Repeat this process on all of the remaing
subproblems.

The converse of top-down design is bottom-up
design. Here you start with tools that solve
subproblems and look for ways to put them
together to solve the main problem. Unless you
have a lot of experience this is usually harder to
apply to large problems, but it can be handy for
details.

For example, in the calendar.py program it was
inevitable that we would get into a situation where
we would need the number of days in each month,
so we started by writing function

def daysInMonth(m, y):
 # This returns 31 for January,
 # 28 or 29 for February, etc.

If you are stuck on how to write a program, this
might give you an easy way to get started.
Programs often write themselves once you get
started on them.

Clicker Question
Here is a design problem you have already faced:

Write function PatternE(n). When n is 3 this prints

 *
 *
 *

 *
 *
 *

Which of the following is a good breakdown of
this into subproblems?

A) Draw the top half of the E, then the bottom half.

B) Draw the vertical line of 2*n+3 stars for the left
side of the E, then the horizontal lines for the top,
middle and bottom bars.

C) Draw a line with n+2 stars for the top, then n lines
with 1 star, then a line with n+1 starts for the
middle bar, then another n lines with 1 star, then
a final line with n+2 stars for the bottom.

D) Draw stars that form a figure-8 and erase the
ones that aren't part of an E.

For the Mastermind game you need to make a code
which is a string of 4 letters taken from "RGBYOP".
What is a good way to do this?

A) Randomly choose a string of 4 letters, then
see if they are all in the string "RGBYOP".

B) Randomly choose an index into "RGBYOP"
(i.e., a number between 0 and 5) and print
the corresponding letter.

C) Randomly choose an index into "RGBYOP"
and put the corresponding letter into an
answer string; do this 4 times, then return the
answer.

